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Graphene-nanoribbons 

 

 

We have studied some graphene-
graphane nanoribbons with length-
to- width ratio  L/D from 2 to 3.22. 
So, nanostructures with ratio  L/D 
less than 3 are classified as 
nanoparticles, nanoribbons with 
ratio  more than 3 are classified as 
nanoribbons.  
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Deformations and elastic properties: empirical study 

 

Computational method 

The entire system energy is described by the 
sum of  the binding energy bE , the torsional 

energy torsE and the van der Waals energy 

vdWE : 

 

vdWtorsbtot EEEE  .             (1) 

 

In order to study the elastic properties and 
deformations of graphene-graphane 
nanoribbons we applied the empirical method 
based on the bond-order potential developed by 
Brenner (  ). 

To describe the 
interaction between the 
atom and its 
environment we 
introduce three different 
regions in topological 
network (see Figure 1). 
As shown in Fig.1, there 
are near (first), far (third) 
and intermediate 
(second) regions about 
atom with number i. 
Atoms from near region are covalently bonded with 
atom i, atoms from other regions are non-bonded 
with atom i. The far region has no borders. 
 

 
Fig. 1. Three different 
regions in topological 
network of an atomic 
structure 

  



4 

 

Each pair of covalently bonded atoms interacts 
via a potential-energy: 
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This is the binding energy. Here VR is the 

repulsive pair term, VA is the attractive pair term, 

ijr is the distance between the atom with number i 

and atom j from near region. The function Bij is the 
many-body term. This term was introduced to 
describe the specificity of the σ–π interaction. So, 
the value of  the binding energy depends on the 
position and chemical identity of atoms.  

 
 

The torsional potential is given by the formula 
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The torsional potential )(V ijkltors   is given as a 

function of a dihedral angle ω. The torsion angle 

ijkl is defined in the usual way as the angle 

between the plane defined by the vectors rik and rij 
and that defined by rij and rjl.   Here atoms j and k 
are given from intermediate (second) region and 
the atom l is given from far region. 
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Van der Waals energy vdWE  

defines the interaction between 
non-bonded atoms:  
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Van der Waals interaction energy may be described by the 

Lennard-Jones, Morse, Buckingham potentials and so on. We have 
implemented and compared Lennard-Jones and Morse potentials as 
functions to define the van der Waals energy. We use Morse 
potential that is given by 
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2
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(5) 
 

where eD is the average bond energy, rE  is the repulsion nucleus 

energy,   , '   - parameters.  
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Algorithm of the 
calculation of the 
Young’s pseudo-
modulus 
 

1) Optimization of atomic structure by entire system energy minimization 
(Eq.1) on atomic coordinates (the atomic structure obtained from previous 
optimization); 

2) tension or compression of the atomic network of nanoribbon and 
reoptimization of atomic structure with atoms fixed on the nanoribbon 
ends; 

3) for the elastic tension of nanoribbon on 1%  the Young’s pseudo-modulus 
is calculated on formula: 

L
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  ,                                                     (6) 

where  a deformation force is given by 

L
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Here E  is  the strain energy, namely, the total energy at a given axial strain 
minus the total energy. 
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Fig.2.  Young’s pseudo-modulus of the nanoribbons 
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We have compared the elastic 
properties of the carbon 
nanotube and the nanoribbon 
with the same width.  
 
We have calculated the Young’s 
pseudo-modulus of the 
nanotube (5,5)  with the 
perimeter about 2.1 nm and of 
the armchair-nanoribbon with 
the width 2.3 nm.  
 
Young’s pseudo-modulus of the 
armchair-nanoribbon is more 
than modulus of the nanotube 
on 27 %. 

 
Fig.3.  Strain energy of nanoribbons undergoing axial tension 
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a) Armchair-nanoribbons 

 
 

b) zigzag-nanoribbons 
 

Fig.4.  Strain energy of nanoribbons undergoing axial tension 
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a) Armchair-nanoribbons 

 
 

b) zigzag-nanoribbons 
 

Fig.5.  Strain energy of nanoribbons undergoing axial compression 
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Deformations and elastic properties: quantum study 

 
The TB method was earlier implemented to 

study a stability of carbon. The energy of a system of 
ion cores and valence electrons is written as 

repbondtot EEE  .                    (8) 

 
Here the term bondE  is the bond structure energy 

that is calculated as the sum of energies of the 
single-particle occupied states. Those single-particle 
energies are known by solving the Schrodinger 
equation 

 

 nn ||
n

H ,                     (9) 

 

where  H  is the one-electron Hamiltonian, n is the 

energy of the nth single-particle state.  
 

The wave functions n| can be approximated by 

linear combination  
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 where  l  is an orthogonal basis set, l is the 

quantum number index and   labels the ions. For 
carbon compounds the matrix elements are 
calculated as 
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where r is the distance between atoms. 
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Term repE  in Eq.(8) is the phenomenon energy 

that is a repulsive potential. It can be expressed as a 
sum of two-body potentials as 
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where repV  is pair potential between  atoms at   

and  . This two-body potential describes an 

interaction between bonded and nonbonded atoms 
and is presented in [8] 
  

























































446
p

2

3
p

2
6

p
3

5rep
p

p

p

r
pexp

r

p
p)r(V                     

(13) 
where i  and j are orbital moments of wave 

function,   presents the bond type (  or ). 

The values of the parameters 0V


, the atomic 

terms and pn for carbon compounds are given in 
table.  
 

Table 1 

s , эВ p , эВ 0
ssV  , эВ 

0
spV  , 

эВ 

0
ppV  , 

эВ 
0
ppV  , эВ 

-10,932 -5,991 -4,344 3,969 5,457 -1,938 

 
p1 p2, Å p3, Å p4 p5, эВ p6 

2,796 2,32 1,54 22 10,92 4,455 
 

Parameters were fitted from experimental data for 
fullerenes and carbon nanotubes. Transferability to other 
carbon compounds was tested by comparison with ab 
initio calculations and experiments.  

Our transferable tight-binding potential can correctly 
reproduce changes in the electronic configuration as a 
function of the local bonding geometry around each 
carbon atom.  
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Fig. 6. Schematic representation of the interaction  

of Pz- and Px- orbital. 
 

All s- and P-orbitals are given in the real Cartesian co-
ordinates system.  To correctly reproduce changes in the 
electronic configuration of the local bonding geometry 
around each atom we have defined P-orbital as the axial 
vector. Each axial vector makes the angle with an direction 
Rij (α, β, θ ) and may be written as the geometrical sum of 
the two vectors: 

 xxDx PPP


,  yyDy PPP


,     (14) 

 zzDz PPP


. 

Here xDP


, yDP


, zDP


 are projections to an iteratomic 

direction,  xP


 … are projections to an orthogonal 

direction.  

So, to describe the interaction between Pz and Px (see 
Fig.) we must write: 

     
 bonding-          bonding-              

PP          PPPP zxzDxDzx



 



.  (15) 
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Angle between projections xDP


 and zDP


 is equal to zero, but an 

angle between projections to an orthogonal direction is not zero and 
it is equal to γ (see Fig.). As a result of some mathematical 
transformations we can write the expressions for cosγ and the energy 
of the interaction between Pz and Px: 
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(17) 

 

Fig. 7. Projections of Pz- and Px- vectors. 
 

 



15 

 

 

 

 
Fig.8. Schematic representation of the interaction  

of Pz- and S- orbitals. 
 

 

 

As well known, the expression for the 
energy of the interaction between S and P-
orbitals can be defined very simple: 

 

  cos)r(V)r(V ijijSPz
SPz

 

(18) 
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Presented scheme to reproduce the 
electronic configuration and the local 
bonding geometry around each atom 
provides the consideration and calculation 
of the rehybridization between σ- and π-
orbitals. In Figure 9 we can see that the 
atom is in sp2 hybridization becomes that 
in sp2+Δ hybridization because of a 
curvature of the topological network.   

 

Degree of rehybridization is defined on 
the pyramidalization angle. This angle is 
calculated on formula: 

 

2p
  . 

 
 Angle   is presented as shown in Figure 

9. π-orbital axis vector makes equal angles 
to the σ-bonds at a conjugated carbon 
atom. Fig.9. Rehybridization  
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To research the nanoribbons using tight-
binding potential our own program was used.   
Own program provides the calculation of the 
total energy of nanostructures, which consist 
500-5000 atoms. We have adapted our TB 
method to be able to run the algorithm on a 
parallel computing machine (computer cluster). 

During consideration of the algorithm we 
can note two points: 
solution of eigenvalues problem and, possibly, 
eigenvectors problem for the M*NxM*N matrix  
- one-electron Hamiltonian (N is the the number 
of atoms, M is maximum  number of valence 
electrons); 

- solution of optimization problem – the 
total system energy minimization. 

It's necessary to consider the available 
computing power.  
We have a number of dual-processor servers 
which are the  distributed SMP-system. MPI 
(stands for Message Passing Interface) was 
choosen as  mechanism for implementing 
parallelism. 

Some note about optimization. 

When choosing a method of optimization, we took into account the fact that we 
can't make any assumption about the nature and behaviour of target function. 
The target function in this case is the function of the total system energy of 
atoms coordinates. Also the analytics form of this function is unknown. That's 
why we have chose direct search optimization  methods, in particular the Hook-
Jeeves method. This method is one of the fastest modifications of coordinate 
descent methods and provides rapid convergence. We have decided to refuse 
the global search techniques at this stage because of its excessive computational 
complexity, which is the result of multiple calculations of target function. Also we 
assumed that theoretically found initial approximation is located in a small 
neighbourhood of global optimum.  

First, we run our program that computes the target function values in different 
points from range of definition,  with number of MPI threads equal to the 
number of available cores. But it was observed that in this case significant 
performance decrease occurs in calculation compared with the same single 
computation in one thread. This fact can be explained by the large amount of 
memory used for calculation, insufficient L2 cache and bottleneck in bandwidth 
of memory bus. To work around this we decided to use the hybrid OpenMP+MPI 
model in which data transfer between cluster nodes (parallel optimization 
process) is done with MPI and calculation within the node (target function 
calculation) is done with OpenMP. Experimentally we have found most effective 
ratio in terms of computing speed and the use of available resources for the 
problem: target function is calculated in 4 threads on one processor using 
OpenMP, data transfers between processors are   implemented using MPI. 
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So, the presented transferable tight-binding potential and the described scheme to reproduce 
the electronic configuration and the local bonding geometry around each atom are well suited for 
computer simulations of covalently bonded systems in both gas-phase and condensed-phase 
systems.  

We have tested our scheme by comparison with experiments for fullerene and some carbon 
nanotubes. In the table the spectra of the π-orbitals and density of states are presented.    

Results are inresonable agreement with experimental data.  

 

Fig.10. Fullerene C60 and the spectra of π-orbitals 

 
 

IP = 7.61 eV, Eg = 2 eV 
 

r1 = 1.45 A, r2 = 1.40 A. 



19 

 

 

Fig.11. 

 

 

Armchair-nanoribbon undergoing axial 
compression 

 

Atoms on the ends were fixed on the 
plates. The plates were moved to wards 

each other to decrease the length for 
some percent. 
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  Fig.12 
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Plane network undergoing axial 
compression becomes wave-like.  
This is, so called, a phase 
transition.  

Calculation of density of states 
demonstrates absence of changes 
in electronic structure. 

However, the topology has 
nonzero  pyramidalization angles. 

Amplitude of a wave and its 
period are not constant and 
change along axis.   

 

 

 

Fig.13.  
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Fig.14.  

 

Curvature of the atomic network because of compression will decrease the reactivity of the nanoribbon. 
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Fig. 15. Zigzag-nanoribbons undergoing axial compression 
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Fig. 16 
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Fig. 17 

Tight-binding calculation of the 
strain energy of nanoribbons 

undergoing axial compression. 
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Graphane-nanoribbons: chair-conformation 

Fig. 18 

 

 

Armchair-nanoribbon undergoing axial 
compression 

 

 

Carbon atoms on the ends were fixed 
on the plates. These atoms had no 

bonding with hydrogen atoms. 

The plates were moved on a meeting 
each other to decrease the length for 

some percent. 
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Fig. 19
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Fig. 20.  Strain energy of nanoribbons undergoing 
axial tension 

 

 

Fig. 21.  Young’s modulus of nanoparticle undergoing 
axial tension 

 


